An injectable, biodegradable hydrogel for trophic factor delivery enhances axonal rewiring and improves performance after spinal cord injury.
نویسندگان
چکیده
The failure of long descending pathways to regenerate after spinal cord injury (SCI) is generally attributed to inhibitory proteins associated with the glial scar and myelin, or to the loss of neurons' intrinsic capacity to grow, or both. Here, we describe the use of hydrogels as a novel way to deliver molecules that promote axon growth in the injured CNS of adult rats. This method utilizes an injectable liquid polymer solution that crosslinks into a biodegradable, water-swollen hydrogel when photoactivated under visible light. Neurotrophin-3 (NT-3), a trophic factor known to act on corticospinal tract (CST) projection neurons, was used as a prototypic pro-regenerative molecule. Hydrogel release properties were established in vitro to ensure long-term, sustained NT-3 release over a 2-week period; this avoided the need for multiple injections or minipump implantation. Hydrogel/NT-3-treated animals showed improved recovery in the open-field BBB test and in a horizontal ladder walk test compared to controls implanted with hydrogel alone. At the anatomical level, hydrogel/NT-3-treated animals showed far greater axon growth than controls in two major descending pathways for motor control, the CST and the raphespinal tract. In the case of the CST, much of the NT-3-induced growth represented collateral branching from undamaged ventral CST fibers. These studies demonstrate the effectiveness of hydrogel technology as a clinically feasible delivery system to promote regeneration and enhance functional outcome after spinal cord injury.
منابع مشابه
Local Delivery of Neurotrophin-3 and Anti-NogoA Promotes Repair After Spinal Cord Injury.
Tissue and functional repair after spinal cord injury (SCI) continue to elude researchers. Neurotrophin-3 (NT-3) and anti-NogoA have been shown to promote axonal regeneration in animal models of SCI; however, localized and sustained delivery to the central nervous system (CNS) remains a critical challenge for these and other macromolecular therapeutics. An injectable drug delivery system (DDS) ...
متن کاملHydrogel mediated delivery of trophic factors for neural repair.
Neurotrophins have been implicated in a variety of diseases and their delivery to sites of disease and injury has therapeutic potential in applications including spinal cord injury, Alzheimer's disease, and Parkinson's disease. Biodegradable polymers, and specifically, biodegradable water-swollen hydrogels, may be advantageous as delivery vehicles for neurotrophins because of tissue-like proper...
متن کاملSustained delivery of bioactive neurotrophin-3 to the injured spinal cord.
Spinal cord injury is a debilitating condition that currently lacks effective clinical treatment. Neurotrophin-3 (NT-3) has been demonstrated in experimental animal models to induce axonal regeneration and functional improvements, yet its local delivery remains challenging. For ultimate clinical translation, a drug delivery system is required for localized, sustained, and minimally invasive rel...
متن کاملP53: The Use of Fluoro-Gold for Retrograde Tracing of Cell Injection after Spinal Cord Injury: Improves Axonal Growth after Transplantation of Cells
لطفاً به چکیده انگلیسی مراجعه شود.
متن کاملSpinal Cord Repair Strategies: Schwann Cells, Neurotrophic Factors, and Biodegradable Polymers
Injury to the adult mammalian spinal cord leads to permanent loss of controlled neurological function. Endogenous repair mechanisms fail to reestablish functional synoptic connections. Moreover, neurological outcome usually gets worse in time, due to neurodestructive processes inherent to the adult spinal cord. Surgical repair strategies need to focus on replacing damaged/ lost nervous tissue, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Experimental neurology
دوره 201 2 شماره
صفحات -
تاریخ انتشار 2006